Tuesday, January 22, 2019

author photo

Robert W. "Bob" Gore (born April 15, 1937) is an American engineer and scientist, inventor and businessman. Gore has led his family's company, W. L. Gore and Associates, in developing applications of polytetrafluoroethylene (PTFE) ranging from computer cables to medical equipment to the outer layer of space suits. His most significant breakthrough is likely the invention of Gore-Tex, a waterproof/breathable fabric popularly known for its use in sporting and outdoor gear.

Robert Gore was born in Salt Lake City, Utah on April 15, 1937, to Wilbert "Bill" and Genevieve "Vieve" Gore. His family relocated to near Newark, Delaware in 1950, to be near his father's work at the DuPont Experimental Station in Wilmington, Delaware. The Gore family stayed with friends for several months while Bob's father built their house. Bob attended school in Newark beginning in eighth grade.

Gore graduated with a bachelor's degree in chemical engineering at the University of Delaware in 1959. With his wife and son, he moved to University Village in September 1959 to attend graduate school. He completed his graduate studies at the University of Minnesota, earning an M.S. and then a Ph.D. in Chemical Engineering in 1963.


While his father Bill Gore was working for DuPont, he was also experimenting at home with DuPont materials such as Teflon Polytetrafluoroethylene (Teflon PTFE). He wanted to insulate electrical wires using PTFE, but attempts to coat wire with powdered PTFE did not produce a consistent coating. In April 1957, while Bob was still a sophomore at Delaware, Bill showed him around his home lab and explained the problem he was having.

Bob suggested surrounding the wire with a different form of PTFE, a white tape that was already of uniform thickness. His father expected that the PTFE tape would not stick to the wire, but he tried the idea, and it worked. Wires were laid between layers of PTFE tape and sent through a grooved calendar roll, then heated to melt the tape into a coherent coating. The result was a PTFE-insulated ribbon cable containing multiple copper conductors, later called "Multi-Tet Cable".

Solution of this technical problem was highly significant, and enabled Gore's parents, Bill and Genevieve, to create W. L. Gore and Associates in 1958. For the first two years, the business was run out of the basement of the Gore home. Robert Gore lived upstairs with his parents, other family members, and employees of the company. At one point 13 of the 16 people working for the company lived in the Gore home.

As stated in a 1960 brochure, the company "was established for the purpose of developing and utilizing technology in the field of fluorocarbon polymers, especially polytetrafluoroethylene", materials which "have a great and undeveloped potential to contribute value to society."

Multi-Tet cable was the breakout product for the new company. Bob Gore was listed as the inventor when W. L. Gore and Associates registered its first patent in 1958, for what was then called "Multiconductor Wiring Strip". Multi-tet cable was eventually used in the IBM System/360 and other computers and in communications and process control equipment.The company provided cables for the Surveyor satellites and Apollo space crafts. During the Apollo 11 space mission, astronauts used a Gore cable to connect their ship to a seismograph placed on the surface of the moon.

Bob Gore was elected to the Board of Directors of W. L. Gore and Associates in June 1961, while still a student at the University of Minnesota.

After receiving his Ph.D. in chemical engineering from the University of Minnesota in 1963, Robert Gore joined W. L. Gore and Associates as a research associate. In 1967 he became the company’s technical and research leader.

In 1969, Bob Gore was researching a process for stretching extruded PTFE into pipe thread tape when he discovered that the polymer could be "expanded" into a porous form of PTFE, characterized by extremely high strength and porosity. He and others had attempted to stretch rods of PTFE by about 10%. His discovery of the right conditions for stretching PTFE was a happy accident, born partly of frustration. Instead of slowly stretching the heated material, he applied a sudden, accelerating yank. The solid PTFE unexpectedly stretched about 800%, forming a microporous structure that was about 70% air.

A patent application for expanded PTFE was filed on May 21, 1970, and eventually two separate patents were issued, one for the product, and another for the processes for making the product.

Bob Gore continued to investigate the properties of the new material, studying the effectiveness of different PTFE resins. He also worked with others to develop techniques for stretching the material both one-dimensionally, to create long filaments, and two-dimensionally, to create sheets of the membrane. Two-dimensional stretching created sheets with greater strength, porosity, and air flow, opening up possibilities for many new applications.

By 1971, Gore was experimenting with laminates, combining the stretched membrane with supporting materials for added strength. Based on this work, the company developed a waterproof laminate called expanded polytetrafluoroethylene (ePTFE), now trademarked as Gore-Tex.

Some of the company's earliest successful products, based on work with laminates, were burn bandages developed for the Park-Davis company, microfiltration products for Millipore Corporation, and a membrane for blood oxygenation for Baxter International. Creating Gore-Tex tubes for use as vascular grafts was another area of rapid development.

Gore-Tex is particularly useful internally in medical applications because it is nearly inert inside the body. In addition, the porosity of Gore-Tex permits the body’s own tissue to grow through the material, integrating grafted material into the circulation system.

More popularly, Gore-Tex is known for its use as a waterproof, breathable fabric, used in outdoor clothing and sport footwear. To the human eye, it looks and feels like a smooth fabric. Structurally, the membrane of the fabric contains about nine-billion microscopic pores per square inch. The holes are large enough to allow body heat and water vapour to escape, but small enough to deflect water drops. As a result, moisture from rain or snow cannot penetrate the fabric, while perspiration can escape as it evaporates.

The first report of using Gore-Tex to make waterproof, breathable garments appeared in a market report, April 13, 1972. The manufacturing process was patented in 1972. The first commercial sales of Gore-Tex were made in 1976 when Early Winters, Ltd., began making and selling Gore-Tex tents. The next year Early sold Gore-Tex rainwear.

Gore-Tex is typically placed between an outer fabric and an inner lining. The material allows moisture to pass easily from one layer through the next, a process known as wicking. This, and a polymer coating that increases the ability of the fabric to repel water, reduce the chance that the wearer will become damp, cold, or a victim of heat loss. In 1989, Gore began to license manufacturers to use the Gore-Tex material and label: however, products must survive rigorous testing in the Gore company's rain room, abrasion tests and washing machines to be authorized for market release.

Robert W. Gore 1

Robert W. Gore 2

Robert W. Gore 3

Robert W. Gore 4

Robert W. Gore 5

Complete article available at this page.

your advertise here

This post have 0 komentar


EmoticonEmoticon

Next article Next Post
Previous article Previous Post

Advertisement

Themeindie.com