Raymond Vahan Damadian (born March 16, 1936) is an American physician, medical practitioner, and inventor of the first MR (Magnetic Resonance) Scanning Machine.
Damadian's research into sodium and potassium in living cells led him to his first experiments with nuclear magnetic resonance (NMR) which caused him to first propose the MR body scanner in 1969. Damadian discovered that tumors and normal tissue can be distinguished in vivo by nuclear magnetic resonance (NMR) because of their prolonged relaxation times, both T1 (spin-lattice relaxation) or T2 (spin-spin relaxation). Damadian was the first to perform a full body scan of a human being in 1977 to diagnose cancer. Damadian invented an apparatus and method to use NMR safely and accurately to scan the human body, a method now well known as magnetic resonance imaging (MRI).
Damadian has received several prizes. In 2001, the Lemelson-MIT Prize Program bestowed its $100,000 Lifetime Achievement Award on Damadian as "the man who invented the MRI scanner." He went on to collaborate with Wilson Greatbach, one early developer of the implantable pacemaker, to develop an MRI-compatible pacemaker. The Franklin Institute in Philadelphia gave its recognition of Damadian's work on MRI with the Bower Award in Business Leadership. He was also named Knights of Vartan 2003 "Man of the Year". He received a National Medal of Technology in 1988 and was inducted in the National Inventors Hall of Fame in 1989.
Damadian was born in New York, to an Armenian family, Vahan and Odette (née Yazedjian). He earned his bachelor's degree in mathematics from the University of Wisconsin–Madison in 1956, and an M.D. degree from the Albert Einstein College of Medicine in New York City in 1960. He studied the violin at Juilliard for 8 years, and played in Junior Davis Cup tennis competitions.
He met his future wife, Donna Terry, while he had a job as a tennis coach. She invited him to the 1957 Billy Graham crusade at Madison Square Garden, and he responded to the altar call. Raymond and Donna married a year after he finished medical school, and they had three children. Raymond says that he first became interested in detecting cancer when, as a boy of 10, he saw his maternal grandmother, with whom he was very close, die painfully of breast cancer.
Damadian's early work on NMR concerned investigating potassium ions inside cells. He found that the potassium relaxation times were much shorter compared with aqueous solutions of potassium ions. This suggested that potassium was not free but complexed to ‘fixed-charge’ counter-ions, as he had previously determined.
He and other researchers independently investigated the signals of 1H NMR in cells, and found that the relaxation times were much shorter than in distilled water. This was consistent with ordering of a large part of the water by adsorption onto macromolecular surfaces. Damadian predicted that cancerous cells would have longer relaxation times, both because of the disordering of malignant cells and because of their elevated potassium levels, since the potassium ions would be ‘structure-breaking’ to the ordered water fraction.
In a 1971 paper in the journal Science,SUNY Downstate Medical Center professor Damadian reported that tumors can be detected in vivo by nuclear magnetic resonance (NMR) because of much longer relaxation times than normal tissue. He suggested that these differences could be used to detect cancer, even in the early stages where it would be most treatable, though later research would find that these differences, while real, are too variable for diagnostic purposes. However, Damadian in his seminal paper claimed only that his method was a detection tool, making no claim about being a diagnostic tool, but intended that it would provide a non-invasive way of detecting cancers and monitoring the effectiveness of their therapy.
According to a Wall Street Journal article, Damadian's initial methods were flawed for practical use, relying on a point-by-point scan of the entire body and using relaxation rates, which turned out to not be an effective indicator of cancerous tissue. However, the same article pointed out, “Nevertheless, his observation of T1 and T2 differences in cancerous tissue was a Eureka moment for Paul Lauterbur.” Furthermore, Damadian's seminal paper documented in its Table 2 that T1 relaxation times were different, beyond experimental uncertainty, across all his samples over different healthy tissues: rectus muscle, liver, stomach, small intestine, kidney, and brain. This showed the way to accurate imaging of the body's soft tissues for the first time; X-ray imaging was severely deficient for soft tissue analysis because the difference in absorption was so small (<4%). So when in the court case Fonar v. General Electric, GE's attorneys made the same claim that relaxations times were also prolonged in non-cancerous tissue, so were not a good diagnostic, Fonar's attorneys responded that it was unfair to punish Damadian because his methods detected even more features than he had intended. Indeed, even today, 90% of MRI scans on patients produce images that are relaxation dependent, either T1- or T2-dependent images.
In 1974, he received the first patent in the field of MRI when he patented the concept of NMR for detecting cancer after filing an application in 1972—now there are over 4,500 patents on MRI. As the National Science Foundation notes, “The patent included the idea of using NMR to ‘scan’ the human body to locate cancerous tissue.” However, it did not describe a method for generating pictures from such a scan or precisely how such a scan might be done. But without Damadian's discovery of the profound sensitivity of the relaxation time to different tissue types and malignant tissue, there would be no picture at all.
In the 1950s, Herman Carr reported creating a one-dimensional MR image. Prompted by Damadian's report on the potential medical uses of NMR, Paul Lauterbur expanded on Carr's technique and developed a way to generate the first MRI images, in 2D and 3D, using gradients. Peter Mansfield from the University of Nottingham then developed a mathematical technique that would allow scans to take seconds rather than hours and produce clearer images than Lauterbur had. While Lauterbur and Mansfield focused on animals and human limbs, Damadian built the first full-body MRI machine and produced the first full magnetic resonance imaging ("MRI") scan of the human body, albeit using a “focused field” technique that differs considerably from modern imaging. In recording the history of MRI, Mattson and Simon (1996) credit Damadian with describing the concept of whole-body NMR scanning, as well as discovering the NMR tissue relaxation differences that made this feasible.
On July 3, 1977, the first MRI body exam was performed on a human being (the first human scan was performed by Peter Mansfield's team in Nottingham a year earlier, on fellow author Andrew Maudsley's finger). It took almost five hours to produce one image: a 106-voxel point-by-point scan of Larry Minkoff's thorax. The images were rudimentary by modern standards. Damadian, along with colleagues Larry Minkoff and Michael Goldsmith took seven years to reach this point. They named their original machine “Indomitable” to capture the spirit of their struggle to do what many said could not be done, though no systems would ever use Damadian's method. His technique of imaging was never made into a practically usable method and has therefore never been used in MR imaging as we know it today.
His patent followed on the heels of rumors already floating throughout the scientific community of Lauterbur's proposed idea of using NMR in vivo (still in the human body, an imaging device). However, in 1969, Damadian had previously proposed NMR as a method for external scanning of internal cancers in the body, i.e. in vivo:
Though it would later turn out to be irreproducible, in his 1971 Science paper, Damadian showed different NMR signals for tumors and different tissue types:
This was clearly influential, as Lauterbur wrote in 1986:
Thus it was the discovery of strongly variant relaxation times that led to Lauterbur's quest to represent these relaxation time differences graphically. Without these differences, unknown until Damadian's work, there would be nothing to make an image with. Hence a book on MRI history, which included chapters on both Damadian and Lauterbur, Chapter 8 entitled, “Raymond V. Damadian: Originator of the Concept of Whole-Body NMR Scanning (MRI) and Discoverer of the NMR Tissue Relaxation Differences That Made It Possible.” The book pointed out the importance of both men:
Damadian's machine is now in the Smithsonian Institution. As late as 1982, there were a handful of MRI scanners in the entire United States; today there are thousands.
In 1978, Damadian formed his own company, Fonar (which stood for "Field Focused Nuclear Magnetic Resonance"), for the production of MRI scanners, and in 1980, he produced the first commercial one. Damadian's "focused field" technology proved less effective than Lauterbur's gradient approach. His scanner, named "Indomitable," failed to sell. Fonar eventually abandoned Damadian's technique in favour of the methods adopted by Lauterbur and Mansfield. Damadian and Fonar enforced the royalties on patents held by Damadian. They settled with many large companies, but a case against General Electric went to the Federal Circuit, which upheld a $129 million ruling against GE for violation of Damadian's patents. Damadian says that the judgment money has all been put back into Fonar for research and development purposes.
Damadian is the company's largest shareholder, with 8% of stock worth $6.5 million. Despite owning only 8% of the stock, he maintains almost 100% control of the company through a separate class of shares (Class C) that only Damadian controls 2007. Damadian later collaborated with Wilson Greatbatch, one early developer of the implantable pacemaker, to develop an MRI-compatible pacemaker. He invented a stand-up MRI system and has 15 MRI scanning centers across the United States. There are a number of independent MRI centers that use this technology both in the U.S. and around the world. The company conceived and built the world's first Upright Multi-Positional MRI, which was recognized as The Invention of the Year in 2007 by the Intellectual Properties Owners Association Education Foundation.
In the February 4, 2014 Bill Nye–Ken Ham debate, Damadian was one of the scientists who recorded themselves on video professing a belief in young Earth creationism for Answers in Genesis president Ken Ham to cite.
Complete article available at this page.
This post have 0 komentar
EmoticonEmoticon